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Abstract: In this article I provide some basic definitions and proofs of identities for rotation matrices R ∈ SO(3). I show that a rotation
matrix can be represented as a matrix exponential. From this, Rodrigues’ formula follows which expresses the matrix in terms of the angle
and axis of rotation. I then show how to reverse this formula to obtain the angle and axis from an arbitrary rotation matrix. Then using the
exponential form, and the angle-axis, I derive a control law for the angular velocity to perform feedback control on orientation error.

1. Euler’s Rotation Theorem

Euler’s rotation theorem states that any change in orientation of a rigid body can be described by:

• A single rotation α (rad),
• About an axis â ∈ R3

where â is a unit vector such that ∥â∥2 = âT â = 1. For example, the 3 combined rotations in Fig. 1 can be reduced
to a single rotation about a single axis.

Figure 1: Any change in the orientation of a rigid body can be described by a single rotation about a single axis.

Any transformation of a vector v ∈ Rn → u ∈ Rn that preserves its length can be expressed with a product
involving a rotation matrix:

u = Rv. (1)

This matrix belongs to the Special Orthogonal group:

SO(n) =
{

R ∈ Rn×n
∣∣∣ RRT = I , det(R) = 1

}
(2)

Given an arbitrary rotation matrix R ∈ SO(3)we may be interested in finding the angle and axis of rotation. To do
this, we need to define some other properties of SO(3) that we can exploit.
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2. Time Derivative & Exponential

If we take the time derivative of Eqn. (1), and assuming v̇ = 0, then we arrive at:

u̇ = Ṙv. (3)

But in 3D, the time derivative of a vector is given by the cross product with the instantaneous angular velocity
ω ∈ R3 (rad/s):

u̇ = ω× u = ︸ ︷︷ ︸
Ṙ

S(ω)

u︷︸︸︷
Rv (4)

where S(·) is the skew-symmetric matrix operator:

S(ω) =

 0 −ωz ωy

ωy 0 −ωx

−ωy ωx 0

 ∈ so(3). (5)

This is also the Lie algebra of SO(3). By equating Eqn. (3) with Eqn. (4), and substituting in Eqn. (1) we can see
that the time derivative of the rotation matrix is "proportional" to itself:

Ṙ = S(ω)R =⇒ R(t) = eS(ω)tR(0) (6)

This is a first-order differential equation whose solution is a (matrix) exponential. But the integral of the angular
velocity is simply the angle-axis vector at any given point in time:∫t

0
ω dt = ωt+����:0

const. = α · â = a. (7)

Assuming we start from zero rotation (R(0) = I), then the rotation matrix is equivalent to a matrix exponential
containing the angle-axis:

R = eS(a) ∈ SO(3). (8)

From the definition of the exponential:

eS(a) =

∞∑
k=0

αk

k!
S(â)k (9)

we can reduce Eqn. (8) to Rodrigues’ formula which features the angle and axis as separate parameters:

R(α, â) = I + sin(α)S(â) + (1 − cos(α))S(â)2. (10)

3. Angle & Axis from Rotation Matrix

Rodrigues’ formula, Eqn. (10), contains 3matriceswith a particular structure to their respective diagonal elements.
If we take the trace1 we can see that:

• trace(I) = 3,
• trace (S(â)) = 0, and
• trace (S(â))2 = −2 since ∥â∥ = 1.

Hence the trace of a rotation matrix must be:

trace(R) = 3 − 2 · (1 − cos(α)) (11a)
= 1 + 2 · cos(α). (11b)

1Sum of diagonal elements
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We can re-arrange this to solve for the angle of rotation:

α = cos−1
(
trace(R) − 1

2

)
. (12)

If the angle of rotation is zero α = 0, then the axis of rotation is arbitrary since 0 · â = 0.
The axis for a rotation matrix does not change Râ = â. This implies that it is an eigenvector whose corresponding
eigenvalue λ = 1.2 For any arbitrary eigenvector of R it must hold that:

Rv = v. (13)

Multiplying this by the transpose of the rotation yields:
I︷ ︸︸ ︷

RTR v = RTv (14a)
v = RTv. (14b)

Equating Eqn. (13) and Eqn. (14) we obtain:

Rv = RTv (15a)(
R − RT

)︸ ︷︷ ︸
S(v)

v = 0. (15b)

The matrix R − RT must be skew-symmetric since v × v = S(v)v = 0. Expanding this we have:

R − RT =

 0 r12 − r21 r13 − r31
r21 − r12 0 r23 − r32
r31 − r13 r32 − r23 0

 . (16)

Usingwhat we know about the structure of skew-symmetric matrices, Eqn. (5), we can deduce that the eigenvector
is:

v =

r32 − r23
r13 − r31
r21 − r12

 . (17)

We can then normalise this vector to obtain the axis of rotation â:

â =

{
v

∥v∥ if α ̸= 0
trivial otherwise. (18)

Note that if R = I (i.e. no rotation), then v = 0 and hence ∄∥v∥−1. In this case, we can assign any arbitrary value
to the axis of rotation.

4. Orientation Feedback

We can use the angle-axis vector to perform feedback on the orientation of an automated system. Suppose Rd ∈
SO(3) is the desired orientation, and R ∈ SO(3) is our actual orientation. We can define our orientation error as:

E ≜ RdRT = eS(ϵ). (19)

If R = Rd then E = I, implying no difference between orientations. From Eqn. (6) the time derivative of our
rotation error is:

Ė = S(ϵ̇)E , ϵ̇ = ωd −ω. (20)
where:

• ωd ∈ R3 is the desired angular velocity (rad/s),and
2For any arbitrary matrix A ∈ Rm×m the eigenvector v ∈ Cm and eigenvalue λ ∈ C obey the identity Av = λv.
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• ω ∈ R3 is the actual angular velocity (rad/s).

Assuming ω is our control input, we can define the control law:

ω ≜ ωd + Kϵ (21)

where K ∈ R3×3 is a positive-definite gain matrix.3 The desired angular velocityωd becomes a feed-forward term,
whereas Kϵ is a proportional feedback on the orientation error.4

If we substitute Eqn. (21) in to Eqn. (20) we obtain:

ϵ̇ = −Kϵ =⇒ ϵ(t) = e−Ktϵ(0). (22)

This form implies exponential decay. As the error angle approaches zero ϵ → 0 then the orientation error will
approach the identity E → I such that R → Rd.5

Figure 2 shows the ergoCub rotating a box using this method of orientation control.

Figure 2: Orientation feedback control with angle-axis representation was used to control an object being held by
the ergoCub robot.

3An easy choice here is a diagonal matrix with positive values.
4In such cases where ωd is unavailable, thenω = Kϵ is sufficient.
5This follows from the fact that e0 = 1.
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